

Armor PowerShell Module

[image: Current Version]
 [https://www.powershellgallery.com/packages/Armor][image: Total Downloads]
 [https://www.powershellgallery.com/packages/Armor]

[image: Build Status]
 [https://ci.appveyor.com/project/tlindsay42/ArmorPowerShell/branch/master][image: Build Status]
 [https://travis-ci.org/tlindsay42/ArmorPowerShell][image: Coverage Status]
 [https://coveralls.io/github/tlindsay42/ArmorPowerShell?branch=master][image: Documentation Status]
 [http://armorpowershell.readthedocs.io/en/latest/?badge=latest]

[image: Join the chat at https://gitter.im/ArmorPowerShell/Lobby]
 [https://gitter.im/ArmorPowerShell/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]This is a community project that provides a powerful command-line interface for managing and monitoring your Armor Complete [https://www.armor.com/armor-complete-secure-hosting/] (secure public cloud) and Armor Anywhere [https://www.armor.com/armor-anywhere-security/] (security as a service) environments & accounts via a PowerShell module with cmdlets that interact with the published RESTful APIs [https://docs.armor.com/display/KBSS/Armor+API+Guide].

Every code push is built on Windows via AppVeyor [https://ci.appveyor.com/project/tlindsay42/ArmorPowerShell/branch/master], as well as on macOS and Ubuntu Linux via Travis CI [https://travis-ci.org/tlindsay42/ArmorPowerShell], and tested using the Pester [https://github.com/pester/Pester] test & mock framework.

Code coverage scores and reports showing how much of the project is covered by automated tests are tracked by Coveralls [https://coveralls.io/github/tlindsay42/ArmorPowerShell?branch=master].

Every successful build is published on the PowerShell Gallery [https://www.powershellgallery.com/packages/Armor].

The source code is available on GitHub.

Requirements

At a minimum, you will need the following:

	An Armor Complete or Armor Anywhere account.

	An Armor Management Portal user account that has been granted membership to one or more roles configured with sufficient permissions to interact with the environment.

	Either:

	Windows PowerShell version 5.0 or

	Higher or PowerShell Core [https://github.com/PowerShell/PowerShell] version 6.0 or higher.

Install

This repository contains a folder named Armor [https://www.armor.com]. The folder needs to be installed into one of your PowerShell Module Paths using one of the installation methods outlined in the next section. To see the full list of available PowerShell Module paths, use $Env:PSModulePath.Split(';') in a PowerShell terminal window.

Common PowerShell module paths include:

	Current User: %USERPROFILE%\Documents\WindowsPowerShell\Modules\

	All Users: %ProgramFiles%\WindowsPowerShell\Modules\

	OneDrive: $Env:OneDrive\Documents\WindowsPowerShell\Modules\

Option 1: PowerShell Gallery Installation (Recommended)

	Ensure you have the Windows Management Framework 5.0 [https://www.microsoft.com/en-us/download/details.aspx?id=50395] or greater installed.

	Open a Powershell console with the Run as Administrator option.

	Run Set-ExecutionPolicy using the parameter RemoteSigned or Bypass.

	Run Install-Module -Name Armor -Scope CurrentUser to download the module from the PowerShell Gallery. Note that the first time you install from the remote repository it may ask you to first trust the repository.

Option 2: PowerShell Gallery Download

	Ensure you have the Windows Management Framework 5.0 [https://www.microsoft.com/en-us/download/details.aspx?id=50395] or greater installed.

	Open a Powershell console with the Run as Administrator option.

	Run Set-ExecutionPolicy using the parameter RemoteSigned or Bypass.

	Run Save-Module -Name Armor -Path <path> to download the module from the PowerShell Gallery. Note that the first time you install from the remote repository it may ask you to first trust the repository.

	Copy the contents of the Armor module folder onto your workstation into the desired PowerShell Module path.

Option 3: Manual Installation

	Download the master branch [https://github.com/tlindsay42/ArmorPowerShell] to your workstation.

	Copy the contents of the Armor folder onto your workstation into the desired PowerShell Module path.

	Open a Powershell console with the Run as Administrator option.

	Run Set-ExecutionPolicy using the parameter RemoteSigned or Bypass.

Verification

PowerShell will create a folder for each new version of any module you install. It’s a good idea to check and see what version(s) you have installed and running in the session. To begin, let’s see what versions of the Armor Module are installed:

Get-Module -ListAvailable -Name Armor

The -ListAvailable switch will pull up all installed versions from any path found in $Env:PSModulePath. Check to make sure the version you wanted is installed. You can safely remove old versions, if desired.

To see which version is currently loaded, use:

Get-Module -Name Armor

If nothing is returned, you need to first load the module by using:

Import-Module -Name Armor

If you wish to load a specific version, use:

Import-Module -Name Armor -RequiredVersion #.#.#.#

Where “#.#.#.#” represents the version number.

Update

Option 1: PowerShell Gallery Update (Recommended)

If you installed the module via the PowerShell Gallery, please implement the following when you want to update to a newer version:

	Open a Powershell console with the Run as Administrator option.

	Run Update-Module -Name Armor.

Option 2: PowerShell Gallery Download

If you deployed a saved module via the PowerShell Gallery, please implement the following when you want to update to a newer version:

	Open a Powershell console with the Run as Administrator option.

	Run Save-Module -Name Armor -Path <path> to download the module from the PowerShell Gallery. Note that the first time you install from the remote repository it may ask you to first trust the repository.

	Copy the contents of the Armor module folder onto your workstation into the desired PowerShell Module path.

Option 3: Manual Installation

If you deployed the module via download from GitHub, please implement the following when you want to update to a newer version:

	Download the master branch [https://github.com/tlindsay42/ArmorPowerShell] to your workstation.

	Copy the contents of the Armor folder onto your workstation into the desired PowerShell Module path.

Uninstall

Option 1: Uninstall-Module (Recommended)

If you installed the module via the PowerShell Gallery, please implement the following when you want to uninstall the module:

	Open a Powershell console with the Run as Administrator option.

	Run Uninstall-Module -Name Armor.

Option 2: Delete the Armor module directory

	Delete the Armor directory in your PowerShell Module path.

Getting Started

Now that you have the Armor module installed on your workstation, there’s a few beginner commands that you can explore to feel comfortable with the available functions.

Connecting to Armor

To begin, let’s connect to the Armor API. To keep things simple, we’ll do the first command without any supplied parameters.

	Open a PowerShell terminal window

	Type Connect-Armor and press enter.

A prompt will appear asking you for credentials. Enter your Armor Management Portal (AMP) username and password. Once entered, you will receive a multi-factor authentication request. Once accepted, you will see details about the newly created connection.

[image: _images/sR6AN22.png]
At this point, you are authenticated and ready to begin issuing commands to the Armor API.

Commands and Help

What if we didn’t know that Connect-Armor exists? To see a list of all available commands, type in Get-Command -Module Armor. This will display a list of every function available in the module. Note that all commands are in the format of Verb-ArmorNoun. This has two benefits:

	Adheres to the Microsoft requirements for PowerShell functions.

	Use of “Armor” in the name should avoid collisions with other commands.

For details on a command, use the PowerShell help command Get-Help. For example, to get help on the Connect-Armor function, use the following command:

Get-Help -Name Connect-Armor

This will display a description about the command.

For details and examples, use the -Detailed parameter.

Get-Help Connect-Armor -Detailed

For all available information, use the -Full parameter.

Get-Help Connect-Armor -Full

Gathering Data

Let’s get information about the Armor account. The use of any command beginning with the word Get is safe to use. No data will be modified. These are good commands to use if this is your first time using PowerShell.

We’ll start by looking up the version running on the Armor cluster. Enter the command below and press enter:

Get-ArmorAccount

The result is fairly simple: the command will output the Armor accounts that this user account has access to. How about something a bit more complex? Try getting all of the virtual machines (VMs) in the Armor account. Here’s the command:

Get-ArmorVM

Lots of stuff should be scrolling across the screen. You’re seeing information on every Armor VM at a very detailed level. If you want to see just one Armor VM, tell the command to limit results. You can do this by using a parameter. Parameters are ways to control a function. Try it now.

Get-ArmorVM -ID 12345

The -ID portion is a parameter and 12345 is a value for the parameter. This effectively asks the function to limit results to the specified VM: 12345. Easy, right?

For a full list of available parameters and examples, use Get-Help Get-ArmorVM -Full. Every Armor command has native help available.

Modifying Data

Not every command will be about gathering data. Sometimes you’ll want to modify or delete data, too. The process is nearly the same, although some safeguards have been implemented to protect against errant modifications. Let’s start with an easy one.

This works best if you have a test virtual machine that you don’t care about. Make sure that virtual machine is visible to the Armor cluster. To validate this, use the following command:

Get-ArmorVM -Name "Name"

Make sure to replace "Name" with the actual name of the virtual machine. If you received data back from Armor, you can be sure that this virtual machine exists in the account and can be modified if the user has sufficient permissions.

	Note:

	The double quotes are required if your virtual machine has any spaces in the name. It’s generally considered a good habit to always use double quotes around the name of objects.

Let’s rename this virtual machine. To do this, use the following command:

Rename-ArmorVM -ID 12345 -Name "NewName"

Before the change is made, a prompt will appear asking you to confirm the change.

Confirm
Are you sure you want to perform this action?
Performing the operation "Renames the specified virtual machine in your account" on target "20931"".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

This is a safeguard. You can either take the default action of “Yes” by pressing enter, or type “N” if you entered the wrong name or changed your mind. If you want to skip the confirmation check all together, use the -Confirm:$false parameter like this:

Rename-ArmorVM -ID 12345 -Name "NewName" -Confirm:$false

This will make the change without asking for confirmation. Be careful!

Project Architecture

This page contains details on the artifacts found within the repository.

	
	Armor: The parent folder containing the module

	
	Formats: Output decoration definition files

	Etc: Configuration files

	Lib: Class files

	Private: Private functions that are used internally by the module

	Public: Published functions that are available to the user when the PowerShell module is loaded

	Armor.psd1: Module manifest

	Armor.psm1: Script module file

	build: Continuous integration initialization and build scripts

	deploy: Continuous deployment scripts to publish to the PowerShell Gallery and GitHub

	docs: Module documentation

	templates: Templates for creating your own functions

	
	tests: Pester unit tests used to validate the public functions

	
	config: Continuous integration environment and module configuration tests

	etc: Configuration files

	lib: Class tests

	private: Private function tests

	public: Public function tests

	workflows: Sample workflows for more complex automation tasks

Support

The community module is not officially supported and should be used at your own risk.

A future release may include formal support.

To report a bug, request an enhancement, or provide feedback about this project, please open an issue [https://github.com/tlindsay42/ArmorPowerShell/issues].

Licensing

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Frequently Asked Questions

This section will contain a list of questions that have been received (and answered) by the Project Team.

Connect Commands

This page contains details on Connect commands.

Connect-Armor

	NAME

	Connect-Armor

	SYNOPSIS

	Connects to the Armor API and establishes a session.

	SYNTAX

	Connect-Armor [[-Credential] <PSCredential>] [[-AccountID] <UInt16>] [[-Server] <String>] [[-Port] <UInt16>] [[-ApiVersion] <String>] [<CommonParameters>]

	DESCRIPTION

	Connects to the Armor RESTful API and supplies credentials to the method. The
Armor API then returns a unique, temporary authorization code, which is then
converted into a token to represent the user’s credentials for subsequent
calls. Last, the account context is set. If an account ID is not specified,
one is automatically selected from the list of authorized account IDs. Returns
the session details which are stored in the variable: $Global:ArmorSession.

	PARAMETERS

	
	-Credential <PSCredential>

	Your Armor API username and password. If not supplied as a parameter, you will
be prompted for your credentials.

	-AccountID <UInt16>

	Specifies the Armor account ID to use for all subsequent requests. The
permitted range is 1-65535.

	-Server <String>

	Specifies the Armor API server IP address or FQDN.

	-Port <UInt16>

	Specifies the Armor API server listening TCP port. The permitted range is:
1-65535.

	-ApiVersion <String>

	Specifies the API version for this request. The specified value is also set as
the default API version for the session as a parameter of the session variable:
‘$Global:ArmorSession.ApiVersion’.

The API version can be specified when any other public cmdlets are called or
the value of ‘$Global:ArmorSession.ApiVersion’ can be updated afterward to set
a different default API version for the session.

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Connect-Armor

Prompts for the username and password, and then attempts to log into the Armor
API.

————————– EXAMPLE 2 ————————–

PS C:>Connect-Armor -Credential $pscredential

Attempts to log into the Armor API with the credentials stored in the
$pscredential object.

————————– EXAMPLE 3 ————————–

PS C:>Connect-Armor -Credential $pscredential -AccountID 12345

Attempts to log into the Armor API with the credentials stored in the
$pscredential object, and sets the account context to ‘12345’.

————————– EXAMPLE 4 ————————–

PS C:>Connect-Armor -Credential $pscredential -ApiVersion ‘v1.0’

Attempts to log into the Armor API with the credentials stored in the $pscredential object and sets the specified API version as the default for the session, which is stored in $Global:ArmorSession.ApiVersion.

————————– EXAMPLE 5 ————————–

PS C:>Connect-Armor -Credential $pscredential -Server ‘localhost’ -Port 8443

Attempts to log into a local test/dev Armor API instance listening on port
8443/tcp with the credentials stored in the $pscredential object.

	REMARKS

	To see the examples, type: “get-help Connect-Armor -examples”.
For more information, type: “get-help Connect-Armor -detailed”.
For technical information, type: “get-help Connect-Armor -full”.
For online help, type: “get-help Connect-Armor -online”

Disconnect Commands

This page contains details on Disconnect commands.

Disconnect-Armor

	NAME

	Disconnect-Armor

	SYNOPSIS

	Disconnects from Armor and destroys the session information.

	SYNTAX

	Disconnect-Armor [-WhatIf] [-Confirm] [<CommonParameters>]

	DESCRIPTION

	Disconnects from the Armor API and destroys the $Global:ArmorSession session
variable.

	PARAMETERS

	-WhatIf [<SwitchParameter>]

-Confirm [<SwitchParameter>]

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Disconnect-Armor

Disconnects from the Armor API and destroys the $Global:ArmorSession session
variable.

	REMARKS

	To see the examples, type: “get-help Disconnect-Armor -examples”.
For more information, type: “get-help Disconnect-Armor -detailed”.
For technical information, type: “get-help Disconnect-Armor -full”.
For online help, type: “get-help Disconnect-Armor -online”

Get Commands

This page contains details on Get commands.

Get-ArmorAccount

	NAME

	Get-ArmorAccount

	SYNOPSIS

	Retrieves Armor account details.

	SYNTAX

	Get-ArmorAccount [[-ID] <UInt16>] [[-ApiVersion] <String>] [<CommonParameters>]

Get-ArmorAccount [[-Name] <String>] [[-ApiVersion] <String>] [<CommonParameters>]

	DESCRIPTION

	Retrieves a list of Armor account memberships for the currently authenticated
user. Returns a set of accounts that correspond to the filter criteria
provided by the cmdlet parameters.

	PARAMETERS

	
	-ID <UInt16>

	Specifies the ID of the Armor account.

	-Name <String>

	Specifies the name of the Armor account.

	-ApiVersion <String>

	Specifies the API version for this request.

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Get-ArmorAccount

Gets all Armor accounts assigned to the logged in user account.

————————– EXAMPLE 2 ————————–

PS C:>Get-ArmorAccount -Name Child

Gets all Armor accounts assigned to the logged in user account with a name
containing the word ‘Child’.

————————– EXAMPLE 3 ————————–

PS C:>1, ‘Example Child Account’ | Get-ArmorAccount

Gets the Armor accounts assigned to the logged in user account with ID=1 and
Name=’Example Child Account’ via pipeline values.

————————– EXAMPLE 4 ————————–

PS C:>[PSCustomObject] @{ ‘ID’ = 1 } | Get-ArmorAccount

Gets the Armor account assigned to the logged in user account with ID=1 via
property name in the pipeline.

————————– EXAMPLE 5 ————————–

PS C:>[PSCustomObject] @{ ‘Name’ = ‘My Secure Account’ } | Get-ArmorAccount

Gets the Armor account assigned to the logged in user account with
Name=’My Secure Account’ via property name in the pipeline.

	REMARKS

	To see the examples, type: “get-help Get-ArmorAccount -examples”.
For more information, type: “get-help Get-ArmorAccount -detailed”.
For technical information, type: “get-help Get-ArmorAccount -full”.
For online help, type: “get-help Get-ArmorAccount -online”

Get-ArmorAccountAddress

	NAME

	Get-ArmorAccountAddress

	SYNOPSIS

	Retrieves the mailing address on file for Armor accounts.

	SYNTAX

	Get-ArmorAccountAddress [[-ID] <UInt16>] [[-ApiVersion] <String>] [<CommonParameters>]

	DESCRIPTION

	This cmdlet retrieves the mailing address on file for Armor accounts that your
user account has access to.

	PARAMETERS

	
	-ID <UInt16>

	Specifies the ID of the Armor account with the desired address details.

	-ApiVersion <String>

	Specifies the API version for this request.

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Get-ArmorAccountAddress

Retrieves the mailing address of the Armor account currently in context.

————————– EXAMPLE 2 ————————–

PS C:>Get-ArmorAccountAddress -ID 1

Retrieves the mailing address of the Armor account with ID 1.

————————– EXAMPLE 3 ————————–

PS C:>1, 2 | Get-ArmorAccountAddress

Retrieves the mailing address of the Armor accounts with ID=1 and ID=2 via
pipeline values.

————————– EXAMPLE 4 ————————–

PS C:>[PSCustomObject] @{ ‘ID’ = 1 } | Get-ArmorAccountAddress

Retrieves the mailing address of the Armor account with ID=1 and ID=2 via
property names in the pipeline.

	REMARKS

	To see the examples, type: “get-help Get-ArmorAccountAddress -examples”.
For more information, type: “get-help Get-ArmorAccountAddress -detailed”.
For technical information, type: “get-help Get-ArmorAccountAddress -full”.
For online help, type: “get-help Get-ArmorAccountAddress -online”

Get-ArmorAccountContext

	NAME

	Get-ArmorAccountContext

	SYNOPSIS

	Retrieves the Armor Anywhere or Armor Complete account currently in context.

	SYNTAX

	Get-ArmorAccountContext [<CommonParameters>]

	DESCRIPTION

	If your user account has access to more than one Armor Anywhere and/or Armor
Complete accounts, this cmdlet allows you to get the current context, which all
future requests will reference.

	PARAMETERS

	
	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Get-ArmorAccountContext

Retrieves the Armor account currently in context.

	REMARKS

	To see the examples, type: “get-help Get-ArmorAccountContext -examples”.
For more information, type: “get-help Get-ArmorAccountContext -detailed”.
For technical information, type: “get-help Get-ArmorAccountContext -full”.
For online help, type: “get-help Get-ArmorAccountContext -online”

Get-ArmorCompleteDatacenter

	NAME

	Get-ArmorCompleteDatacenter

	SYNOPSIS

	Retrieves Armor Complete datacenter details.

	SYNTAX

	Get-ArmorCompleteDatacenter [[-ID] <UInt16>] [[-ApiVersion] <String>] [<CommonParameters>]

Get-ArmorCompleteDatacenter [-Name <String>] [[-ApiVersion] <String>] [<CommonParameters>]

Get-ArmorCompleteDatacenter [[-Location] <String>] [[-ApiVersion] <String>] [<CommonParameters>]

	DESCRIPTION

	Retrieves details about the Armor Complete datacenters, regions, and compute
zones. Returns a set of datacenters that correspond to the filter criteria
provided by the cmdlet parameters.

	PARAMETERS

	
	-ID <UInt16>

	Specifies the ID of the Armor Complete datacenter.

	-Name <String>

	Specifies the name of the Armor Complete region.

	-Location <String>

	Specifies the name of the Armor Complete datacenter.

	-ApiVersion <String>

	Specifies the API version for this request.

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Get-ArmorCompleteDatacenter

Retrieves the details for all Armor Complete datacenters.

————————– EXAMPLE 2 ————————–

PS C:>Get-ArmorCompleteDatacenter -ID 2

Retrieves the details for the Armor Complete datacenter with ID=2.

————————– EXAMPLE 3 ————————–

PS C:>1, ‘PHX01’ | Get-ArmorCompleteDatacenter

Retrieves the details for the Armor Complete datacenter with ID=1 and
Location=’PHX01’ via pipeline values.

————————– EXAMPLE 4 ————————–

PS C:>[PSCustomObject] @{ ‘Location’ = ‘EU West’ } | Get-ArmorCompleteDatacenter

Retrieves the details for the Armor Complete datacenter with Name=’EU West’ via
property name in the pipeline.

	REMARKS

	To see the examples, type: “get-help Get-ArmorCompleteDatacenter -examples”.
For more information, type: “get-help Get-ArmorCompleteDatacenter -detailed”.
For technical information, type: “get-help Get-ArmorCompleteDatacenter -full”.
For online help, type: “get-help Get-ArmorCompleteDatacenter -online”

Get-ArmorCompleteWorkload

	NAME

	Get-ArmorCompleteWorkload

	SYNOPSIS

	This cmdlet retrieves Armor Complete workloads.

	SYNTAX

	Get-ArmorCompleteWorkload [[-ID] <UInt16>] [[-ApiVersion] <String>] [<CommonParameters>]

Get-ArmorCompleteWorkload [[-Name] <String>] [[-ApiVersion] <String>] [<CommonParameters>]

	DESCRIPTION

	Workloads and tiers are logical grouping tools for helping you organize your
virtual machines and corresponding resources in your Armor Complete
software-defined datacenters.

Workloads contain tiers, and tiers contain virtual machines.

Workloads are intended to help you describe the business function of a group of
servers, such as ‘My Secure Website’, which could be useful for chargeback or
showback to your customers, as well as helping your staff and the Armor Support
teams understand the architecture of your environment.

Tiers are intended to describe the application tiers within each workload. A
typical three tiered application workload is comprised of presentation,
business logic, and persistence tiers. Common labels for each are: web,
application, and database respectively, but you can group your VMs however you
choose.

Returns a set of workloads that correspond to the filter criteria provided by
the cmdlet parameters.

	PARAMETERS

	
	-ID <UInt16>

	Specifies the ID of the Armor Complete workload.

	-Name <String>

	Specifies the name of the Armor Complete workload.

	-ApiVersion <String>

	Specifies the API version for this request.

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Get-ArmorCompleteWorkload

Retrieves the details for all workloads in the Armor Complete account that
currently has context.

————————– EXAMPLE 2 ————————–

PS C:>Get-ArmorCompleteWorkload -ID 1

Retrieves the details for the workload with ID=1.

————————– EXAMPLE 3 ————————–

PS C:>Get-ArmorCompleteWorkload -Name ‘LAMP stack’

Retrieves the details for the workload with Name=’LAMP stack’.

————————– EXAMPLE 4 ————————–

PS C:>2, ‘WISP stack’ | Get-ArmorCompleteWorkload -ApiVersion ‘v1.0’

Retrieves the API version 1.0 details for the workloads with ID=2 and
Name=’WISP stack’ via pipeline values.

————————– EXAMPLE 5 ————————–

PS C:>[PSCustomObject] @{ ‘Name’ = ‘Secure stack’ } | Get-ArmorCompleteWorkload

Retrieves the details for the workload with Name=’Secure stack’ via property
name in the pipeline.

————————– EXAMPLE 6 ————————–

PS C:>[PSCustomObject] @{ ‘ID’ = 1 } | Get-ArmorCompleteWorkload

Retrieves the details for the workload with ID=1 via property name in the
pipeline.

	REMARKS

	To see the examples, type: “get-help Get-ArmorCompleteWorkload -examples”.
For more information, type: “get-help Get-ArmorCompleteWorkload -detailed”.
For technical information, type: “get-help Get-ArmorCompleteWorkload -full”.
For online help, type: “get-help Get-ArmorCompleteWorkload -online”

Get-ArmorCompleteWorkloadTier

	NAME

	Get-ArmorCompleteWorkloadTier

	SYNOPSIS

	This cmdlet retrieves the tiers in an Armor Complete workload.

	SYNTAX

	Get-ArmorCompleteWorkloadTier [-WorkloadID] <UInt16> [[-ID] <UInt16>] [[-ApiVersion] <String>] [<CommonParameters>]

Get-ArmorCompleteWorkloadTier [-WorkloadID] <UInt16> [[-Name] <String>] [[-ApiVersion] <String>] [<CommonParameters>]

	DESCRIPTION

	Workloads and tiers are logical grouping tools for helping you organize your
virtual machines and corresponding resources in your Armor Complete
software-defined datacenters.

Workloads contain tiers, and tiers contain virtual machines.

Workloads are intended to help you describe the business function of a group of
servers, such as ‘My Secure Website’, which could be useful for chargeback or
showback to your customers, as well as helping your staff and the Armor Support
teams understand the architecture of your environment.

Tiers are intended to describe the application tiers within each workload. A
typical three tiered application workload is comprised of presentation,
business logic, and persistence tiers. Common labels for each are: web,
application, and database respectively, but you can group your VMs however you
choose.

Returns a set of tiers in a workload that correspond to the filter criteria
provided by the cmdlet parameters.

	PARAMETERS

	
	-WorkloadID <UInt16>

	Specifies the ID of the workload that contains the tier(s).

	-ID <UInt16>

	Specifies the ID of the workload tier.

	-Name <String>

	Specifies the names of the workload tiers.

	-ApiVersion <String>

	Specifies the API version for this request.

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Get-ArmorCompleteWorkloadTier -WorkloadID 1

Retrieves the details for all workload tiers in the workload with WorkloadID=1
in the Armor Complete account that currently has context.

————————– EXAMPLE 2 ————————–

PS C:>Get-ArmorCompleteWorkloadTier -WorkloadID 1 -ID 1

Retrieves the details for the workload tier with ID=1 in the workload with
WorkloadID=1.

————————– EXAMPLE 3 ————————–

PS C:>Get-ArmorCompleteWorkloadTier -WorkloadID 1 -Name ‘Database’

Retrieves the details for the workload tier with Name=’Database’ in the
workload with WorkloadID=1.

————————– EXAMPLE 4 ————————–

PS C:>2, 3 | Get-ArmorCompleteWorkloadTier -ApiVersion ‘v1.0’

Retrieves the API version 1.0 details for all of the workload tiers in
workloads with WorkloadID=2 and WorkloadID=3 via pipeline values.

————————– EXAMPLE 5 ————————–

PS C:>[PSCustomObject] @{ ‘WorkloadID’ = 1; ‘ID’ = 1 } | Get-ArmorCompleteWorkloadTier

Retrieves the details for the workload tier with ID=1 in the workload with
WorkloadID=1 via property names in the pipeline.

————————– EXAMPLE 6 ————————–

PS C:>[PSCustomObject] @{ ‘WorkloadID’ = 1; ‘Name’ = ‘Presentation’ } | Get-ArmorCompleteWorkloadTier

Retrieves the details for the workload tier with Name=’Presentation’ in the
workload with WorkloadID=1 via property names in the pipeline.

	REMARKS

	To see the examples, type: “get-help Get-ArmorCompleteWorkloadTier -examples”.
For more information, type: “get-help Get-ArmorCompleteWorkloadTier -detailed”.
For technical information, type: “get-help Get-ArmorCompleteWorkloadTier -full”.
For online help, type: “get-help Get-ArmorCompleteWorkloadTier -online”

Get-ArmorIdentity

	NAME

	Get-ArmorIdentity

	SYNOPSIS

	Retrieves identity details about your Armor user account.

	SYNTAX

	Get-ArmorIdentity [[-ApiVersion] <String>] [<CommonParameters>]

	DESCRIPTION

	Retrieves details about your Armor user account that you used to establish the
session, including account membership and permissions.

This also updates the identity information in the session variable:
$Global:ArmorSession.

	PARAMETERS

	
	-ApiVersion <String>

	Specifies the API version for this request.

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Get-ArmorIdentity

Retrieves the identity details about your Armor user account.

————————– EXAMPLE 2 ————————–

PS C:>Get-ArmorIdentity -ApiVersion 1.0

Retrieves the Armor API version 1.0 identity details about your Armor user
account.

	REMARKS

	To see the examples, type: “get-help Get-ArmorIdentity -examples”.
For more information, type: “get-help Get-ArmorIdentity -detailed”.
For technical information, type: “get-help Get-ArmorIdentity -full”.
For online help, type: “get-help Get-ArmorIdentity -online”

Get-ArmorUser

	NAME

	Get-ArmorUser

	SYNOPSIS

	Retrieves details about the user accounts in your account.

	SYNTAX

	Get-ArmorUser [[-ID] <UInt16>] [[-ApiVersion] <String>] [<CommonParameters>]

Get-ArmorUser [[-UserName] <String>] [[-ApiVersion] <String>] [<CommonParameters>]

Get-ArmorUser [-FirstName <String>] [-LastName <String>] [[-ApiVersion] <String>] [<CommonParameters>]

	DESCRIPTION

	Retrieves details about the user accounts in the Armor Anywhere or Armor
Complete account in context. Returns a set of user accounts that correspond to
the filter criteria provided by the cmdlet parameters.

	PARAMETERS

	
	-ID <UInt16>

	Specifies the ID of the Armor user account.

	-UserName <String>

	Specifies the username of the Armor user account.

	-FirstName <String>

	Specifies the first name of the Armor user account.

	-LastName <String>

	Specifies the last name of the Armor user account.

	-ApiVersion <String>

	Specifies the API version for this request.

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Get-ArmorUser

Retrieves the details for all user accounts in the Armor account that currently
has context.

————————– EXAMPLE 2 ————————–

PS C:>Get-ArmorUser -ID 1

Retrieves the details for all user accounts in the Armor account that currently
has context.

	REMARKS

	To see the examples, type: “get-help Get-ArmorUser -examples”.
For more information, type: “get-help Get-ArmorUser -detailed”.
For technical information, type: “get-help Get-ArmorUser -full”.
For online help, type: “get-help Get-ArmorUser -online”

Get-ArmorVM

	NAME

	Get-ArmorVM

	SYNOPSIS

	Retrieves virtual machine details.

	SYNTAX

	Get-ArmorVM [[-ID] <UInt16>] [[-ApiVersion] <String>] [<CommonParameters>]

Get-ArmorVM [[-CoreInstanceID] <Guid>] [[-ApiVersion] <String>] [<CommonParameters>]

Get-ArmorVM [[-Name] <String>] [[-ApiVersion] <String>] [<CommonParameters>]

	DESCRIPTION

	Retrieves details about the virtual machines in the Armor Anywhere or Armor
Complete account in context. Returns a set of virtual machines that correspond
to the filter criteria provided by the cmdlet parameters.

	PARAMETERS

	
	-ID <UInt16>

	Specifies the IDs of the virtual machines that you want to retrieve.

	-CoreInstanceID <Guid>

	Specifies the Armor Anywhere Core Agent instance IDs of the virtual machines
that you want to retrieve.

	-Name <String>

	Specifies the names of the virtual machines that you want to retrieve.

	-ApiVersion <String>

	Specifies the API version for this request.

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Get-ArmorVM

Retrieves the details for all VMs in the Armor account that currently has
context.

————————– EXAMPLE 2 ————————–

PS C:>Get-ArmorVM -ID 1

Retrieves the details for the VM with ID=1.

————————– EXAMPLE 3 ————————–

PS C:>Get-ArmorVM -Name ‘web1’

Retrieves the details for the VM with Name=’web1’.

————————– EXAMPLE 4 ————————–

PS C:>Get-ArmorVM -Name db*

Retrieves all VMs in the Armor account that currently has context that have a
name that starts with ‘db’.

————————– EXAMPLE 5 ————————–

PS C:>1 | Get-ArmorVM

Retrieves the details for the VM with ID=1 via pipeline value.

————————– EXAMPLE 6 ————————–

PS C:>’secure’ | Get-ArmorVM

Retrieves all VMs containing the word ‘secure’ in the name via pipeline value.

————————– EXAMPLE 7 ————————–

PS C:>[PSCustomObject] @{ ‘ID’ = 1 } | Get-ArmorVM

Retrieves the details for the VM with ID=1 via property name in the pipeline.

————————– EXAMPLE 8 ————————–

PS C:>[PSCustomObject] @{ ‘Name’ = ‘app1’ } | Get-ArmorVM

Retrieves the details for the VM with Name=’app1’ via property name in the
pipeline.

	REMARKS

	To see the examples, type: “get-help Get-ArmorVM -examples”.
For more information, type: “get-help Get-ArmorVM -detailed”.
For technical information, type: “get-help Get-ArmorVM -full”.
For online help, type: “get-help Get-ArmorVM -online”

Invoke Commands

This page contains details on Invoke commands.

Invoke-ArmorWebRequest

	NAME

	Invoke-ArmorWebRequest

	SYNOPSIS

	This cmdlet submits web requests to the Armor API.

	SYNTAX

	Invoke-ArmorWebRequest [-Endpoint] <String> [[-Headers] <Hashtable>] [[-Method] <String>] [[-Body] <String>] [[-SuccessCode] <UInt16>] [[-Description] <String>] [<CommonParameters>]

	DESCRIPTION

	This cmdlet sends custom HTTPS requests to the Armor API. It can be used for
calling API endpoints that are not yet covered by the cmdlets in this module.

	PARAMETERS

	
	-Endpoint <String>

	Specifies the Armor API endpoint.

	-Headers <Hashtable>

	Specifies the headers of the Armor API web request.

	-Method <String>

	Specifies the method used for the Armor API web request. The permitted values
are:
- Delete
- Get
- Patch
- Post
- Put

	-Body <String>

	Specifies the body of the Armor API web request. This parameter is ignored for
Get requests.

	-SuccessCode <UInt16>

	Specifies the value of the HTTP response code that indicates success for this
Armor API web request.

	-Description <String>

	If the PowerShell $ConfirmPreference value is elevated for this Armor API web
request by setting the -Confirm parameter to $true, this specifies the text to
display at the user prompt.

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Invoke-ArmorWebRequest -Endpoint ‘/me’

Retrieves the current user’s identity details.

————————– EXAMPLE 2 ————————–

PS C:>Invoke-ArmorWebRequest -Endpoint ‘/vms’ -Headers $Global:ArmorSession.Headers

Retrieves VM details using the session headers.

	REMARKS

	To see the examples, type: “get-help Invoke-ArmorWebRequest -examples”.
For more information, type: “get-help Invoke-ArmorWebRequest -detailed”.
For technical information, type: “get-help Invoke-ArmorWebRequest -full”.
For online help, type: “get-help Invoke-ArmorWebRequest -online”

Remove Commands

This page contains details on Remove commands.

Remove-ArmorCompleteWorkload

	NAME

	Remove-ArmorCompleteWorkload

	SYNOPSIS

	This cmdlet deletes Armor Complete workloads.

	SYNTAX

	Remove-ArmorCompleteWorkload [-ID] <UInt16> [[-ApiVersion] <String>] [-WhatIf] [-Confirm] [<CommonParameters>]

	DESCRIPTION

	The specified workload in the Armor Complete account in context will be deleted
if is empty.

	PARAMETERS

	
	-ID <UInt16>

	Specifies the ID of the Armor Complete workload.

	-ApiVersion <String>

	Specifies the API version for this request.

-WhatIf [<SwitchParameter>]

-Confirm [<SwitchParameter>]

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Remove-ArmorCompleteWorkload -ID 1

If confirmed and empty of child objects, deletes workload with ID=1.

————————– EXAMPLE 2 ————————–

PS C:>1 | Remove-ArmorCompleteWorkload

If confirmed and empty of child objects, deletes workload with ID=1 identified
via pipeline value.

————————– EXAMPLE 3 ————————–

PS C:>[PSCustomObject] @{ ‘ID’ = 1 | Remove-ArmorCompleteWorkload

If confirmed and empty of child objects, deletes workload with ID=1 identified
via property name in the pipeline.

	REMARKS

	To see the examples, type: “get-help Remove-ArmorCompleteWorkload -examples”.
For more information, type: “get-help Remove-ArmorCompleteWorkload -detailed”.
For technical information, type: “get-help Remove-ArmorCompleteWorkload -full”.
For online help, type: “get-help Remove-ArmorCompleteWorkload -online”

Rename Commands

This page contains details on Rename commands.

Rename-ArmorCompleteVM

	NAME

	Rename-ArmorCompleteVM

	SYNOPSIS

	Renames Armor Complete virtual machines.

	SYNTAX

	Rename-ArmorCompleteVM [-ID] <UInt16> [-NewName] <String> [[-ApiVersion] <String>] [-WhatIf] [-Confirm] [<CommonParameters>]

	DESCRIPTION

	The specified virtual machine in the Armor Complete account in context will be
renamed.

	PARAMETERS

	
	-ID <UInt16>

	Specifies the ID of the Armor Complete virtual machine that you want to
rename.

	-NewName <String>

	Specifies the new name for the Armor Complete virtual machine.

	-ApiVersion <String>

	Specifies the API version for this request.

-WhatIf [<SwitchParameter>]

-Confirm [<SwitchParameter>]

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Rename-ArmorCompleteVM -ID 1 -NewName TEST-VM

Renames the VM with ID=1 to ‘TEST-VM’.

————————– EXAMPLE 2 ————————–

PS C:>[PSCustomObject] @{ ‘ID’ = 1; ‘NewName’ = ‘TEST-VM’ } | Rename-ArmorCompleteVM

Renames the VM with ID=1 to ‘TEST-VM’ via property names in the pipeline.

	REMARKS

	To see the examples, type: “get-help Rename-ArmorCompleteVM -examples”.
For more information, type: “get-help Rename-ArmorCompleteVM -detailed”.
For technical information, type: “get-help Rename-ArmorCompleteVM -full”.
For online help, type: “get-help Rename-ArmorCompleteVM -online”

Rename-ArmorCompleteWorkload

	NAME

	Rename-ArmorCompleteWorkload

	SYNOPSIS

	Renames Armor Complete workloads.

	SYNTAX

	Rename-ArmorCompleteWorkload [-ID] <UInt16> [-NewName] <String> [[-ApiVersion] <String>] [-WhatIf] [-Confirm] [<CommonParameters>]

	DESCRIPTION

	The specified workload in the Armor Complete account in context will be
renamed.

	PARAMETERS

	
	-ID <UInt16>

	Specifies the ID of the Armor Complete workload that you want to rename.

	-NewName <String>

	Specifies the new name of the Armor Complete workload.

	-ApiVersion <String>

	Specifies the API version for this request.

-WhatIf [<SwitchParameter>]

-Confirm [<SwitchParameter>]

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Rename-ArmorCompleteWorkload -ID 1 -NewName TEST-WORKLOAD

Renames the workload with ID=1 to ‘TEST-WORKLOAD’.

————————– EXAMPLE 2 ————————–

PS C:>[PSCustomObject] @{ ‘ID’ = 1; ‘NewName’ = ‘TEST-WORKLOAD’ } | Rename-ArmorCompleteWorkload

Renames the workload with ID=1 to ‘TEST-WORKLOAD’ via property names in the
pipeline.

	REMARKS

	To see the examples, type: “get-help Rename-ArmorCompleteWorkload -examples”.
For more information, type: “get-help Rename-ArmorCompleteWorkload -detailed”.
For technical information, type: “get-help Rename-ArmorCompleteWorkload -full”.
For online help, type: “get-help Rename-ArmorCompleteWorkload -online”

Reset Commands

This page contains details on Reset commands.

Reset-ArmorCompleteVM

	NAME

	Reset-ArmorCompleteVM

	SYNOPSIS

	Resets Armor Complete virtual machines.

	SYNTAX

	Reset-ArmorCompleteVM [-ID] <UInt16> [[-ApiVersion] <String>] [-WhatIf] [-Confirm] [<CommonParameters>]

	DESCRIPTION

	The specified virtual machine in the Armor Complete account in context will be
hard reset- effectively disconnecting the virtual power cord from the VM,
plugging it back in, and then powering it back on. This reboot method has the
potential to cause data corruption and should only be used when necessary.

See also: Restart-ArmorCompleteVM

	PARAMETERS

	
	-ID <UInt16>

	Specifies the ID of the Armor Complete virtual machine that you want to power
off & on.

	-ApiVersion <String>

	Specifies the API version for this request.

-WhatIf [<SwitchParameter>]

-Confirm [<SwitchParameter>]

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Reset-ArmorCompleteVM -ID 1

If confirmed, powers off & on the Armor Complete VM with ID=1.

————————– EXAMPLE 2 ————————–

PS C:>1 | Reset-ArmorCompleteVM -Confirm:$false

Powers off & on the Armor Complete VM with ID=1 via pipeline value.

————————– EXAMPLE 3 ————————–

PS C:>Get-ArmorVM -ID 1 | Reset-ArmorCompleteVM -Confirm:$false

Powers off & on the Armor Complete VM with ID=1 via property name in the
pipeline without confirmation.

	REMARKS

	To see the examples, type: “get-help Reset-ArmorCompleteVM -examples”.
For more information, type: “get-help Reset-ArmorCompleteVM -detailed”.
For technical information, type: “get-help Reset-ArmorCompleteVM -full”.
For online help, type: “get-help Reset-ArmorCompleteVM -online”

Restart Commands

This page contains details on Restart commands.

Restart-ArmorCompleteVM

	NAME

	Restart-ArmorCompleteVM

	SYNOPSIS

	Gracefully reboots virtual machines.

	SYNTAX

	Restart-ArmorCompleteVM [-ID] <UInt16> [[-ApiVersion] <String>] [-WhatIf] [-Confirm] [<CommonParameters>]

	DESCRIPTION

	The specified virtual machine will be gracefully rebooted in the Armor Complete
account in context. VMware Tools or open-vm-tools must be installed and
running for this request to succeed.

See also: Reset-ArmorCompleteVM

	PARAMETERS

	
	-ID <UInt16>

	Specifies the ID of the Armor Complete virtual machine that you want to
gracefully reboot.

	-ApiVersion <String>

	Specifies the API version for this request.

-WhatIf [<SwitchParameter>]

-Confirm [<SwitchParameter>]

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Retart-ArmorCompleteVM -ID 1

Gracefully reboot on the specified Armor Complete VM.

————————– EXAMPLE 2 ————————–

PS C:>1 | Retart-ArmorCompleteVM

Reboot the Armor Complete VM with ID=1 specified via pipeline value.

————————– EXAMPLE 3 ————————–

PS C:>Get-ArmorVM -ID 1 | Retart-ArmorCompleteVM

Reboot the Armor Complete VM with ID=1 via property name in the pipeline.

	REMARKS

	To see the examples, type: “get-help Restart-ArmorCompleteVM -examples”.
For more information, type: “get-help Restart-ArmorCompleteVM -detailed”.
For technical information, type: “get-help Restart-ArmorCompleteVM -full”.
For online help, type: “get-help Restart-ArmorCompleteVM -online”

Set Commands

This page contains details on Set commands.

Set-ArmorAccountContext

	NAME

	Set-ArmorAccountContext

	SYNOPSIS

	Sets the Armor Anywhere or Armor Complete account context.

	SYNTAX

	Set-ArmorAccountContext [-ID] <UInt16> [<CommonParameters>]

	DESCRIPTION

	If your user account has access to more than one Armor Anywhere and/or Armor
Complete accounts, this cmdlet allows you to update the context, so that all
future requests reference the specified account.

	PARAMETERS

	
	-ID <UInt16>

	Specifies which Armor account should be used for the context of all
subsequent requests.

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Set-ArmorAccountContext -ID 1

Set the account context to the specified account ID so that all subsequent
commands reference that account.

————————– EXAMPLE 2 ————————–

PS C:>2 | Set-ArmorAccountContext

Set the account context to 2 via the value in the pipeline.

————————– EXAMPLE 3 ————————–

PS C:>Get-ArmorAccount -ID 3 | Set-ArmorAccountContext

Set the account context to 3 via the ID property name in the pipeline.

	REMARKS

	To see the examples, type: “get-help Set-ArmorAccountContext -examples”.
For more information, type: “get-help Set-ArmorAccountContext -detailed”.
For technical information, type: “get-help Set-ArmorAccountContext -full”.
For online help, type: “get-help Set-ArmorAccountContext -online”

Start Commands

This page contains details on Start commands.

Start-ArmorCompleteVM

	NAME

	Start-ArmorCompleteVM

	SYNOPSIS

	Starts Armor Complete virtual machines.

	SYNTAX

	Start-ArmorCompleteVM [-ID] <UInt16> [[-ApiVersion] <String>] [-WhatIf] [-Confirm] [<CommonParameters>]

	DESCRIPTION

	The specified virtual machine in the Armor Complete account in context will be
powered on.

	PARAMETERS

	
	-ID <UInt16>

	Specifies the ID of the VM to power on in the Armor Complete account in
context.

	-ApiVersion <String>

	Specifies the API version for this request.

-WhatIf [<SwitchParameter>]

-Confirm [<SwitchParameter>]

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Start-ArmorCompleteVM -ID 1

Power on the Armor Complete VM with ID=1.

————————– EXAMPLE 2 ————————–

PS C:>2 | Start-ArmorCompleteVM

Power on the Armor Complete VM with ID=2 via pipeline value.

————————– EXAMPLE 3 ————————–

PS C:>Get-ArmorVM -ID 3 | Start-ArmorCompleteVM

Power on the Armor Complete VM with ID=3 via property name in the pipeline.

	REMARKS

	To see the examples, type: “get-help Start-ArmorCompleteVM -examples”.
For more information, type: “get-help Start-ArmorCompleteVM -detailed”.
For technical information, type: “get-help Start-ArmorCompleteVM -full”.
For online help, type: “get-help Start-ArmorCompleteVM -online”

Stop Commands

This page contains details on Stop commands.

Stop-ArmorCompleteVM

	NAME

	Stop-ArmorCompleteVM

	SYNOPSIS

	Stops Armor Complete virtual machines.

	SYNTAX

	Stop-ArmorCompleteVM [-ID] <UInt16> [[-Type] <String>] [[-ApiVersion] <String>] [-WhatIf] [-Confirm] [<CommonParameters>]

	DESCRIPTION

	The specified virtual machine in the Armor Complete account in context will be
powered down.

	PARAMETERS

	
	-ID <UInt16>

	Specifies the ID of the Armor Complete virtual machine that you want to stop.

	-Type <String>

	Specifies how you want to stop the Armor Complete virtual machine.

	Shutdown
- Initiates a graceful shutdown of the operating system.
- VMware Tools or open-vm-tools must be installed, running, and in a good

state for this request to succeed.

	This is the recommend way to stop your VMs.

	Poweroff
- Initiates a hard shutdown of the VM- effectively disconnecting the virtual

power cord from the VM.

	This shutdown method has the potential to cause data corruption.

	This should only be used when necessary.

	ForceOff
- Breaks the state of the environment by marking the VM as powered off in

the Armor Management Portal (AMP), but leaves the VM running in the Armor
Complete cloud.

	This should not be used unless recommended by a Senior Armor Support team
member.

	-ApiVersion <String>

	Specifies the API version for this request.

-WhatIf [<SwitchParameter>]

-Confirm [<SwitchParameter>]

	<CommonParameters>

	This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer, PipelineVariable, and OutVariable. For more information, see
about_CommonParameters (http://go.microsoft.com/fwlink/?LinkID=113216).

————————– EXAMPLE 1 ————————–

PS C:>Stop-ArmorCompleteVM -ID 1 -Type Shutdown

If confirmed, gracefully shutdown the specified Armor Complete VM.

————————– EXAMPLE 2 ————————–

PS C:>2 | Stop-ArmorCompleteVM -Type Poweroff -Confirm:$false

Power off the Armor Complete VM with ID=2 via pipeline value without prompting
for confirmation.

————————– EXAMPLE 3 ————————–

PS C:>Get-ArmorVM -ID 3 | Stop-ArmorCompleteVM -Type ForceOff -Confirm:$false

Break the state of the Armor Complete VM with ID=3 via parameter name in the
pipeline without prompting for confirmation, so that the VM appears to be
powered off in the Armor Management Portal (AMP), but is still powered on in
the Armor Complete cloud.

	REMARKS

	To see the examples, type: “get-help Stop-ArmorCompleteVM -examples”.
For more information, type: “get-help Stop-ArmorCompleteVM -detailed”.
For technical information, type: “get-help Stop-ArmorCompleteVM -full”.
For online help, type: “get-help Stop-ArmorCompleteVM -online”

Index

 _static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Armor PowerShell Module

_images/sR6AN22.png
PS C:\> Import-Module -Name Armor
PS C:\> Connect-Armor

cmdlet Get-Credential at_command pipeline position 1
supply values for the following parameters:
redential

Name

D

UserName

AccountContextID

server api_.armor. com

SessionStartTime 2017-11-03 00:50:36

Headers {X-Account-Context, Accept, Content-Type, Aut..
Port 443

SessionExpirationTime 2017-11-03 01:20:36

Accounts

Apiversion V1.0

_static/ajax-loader.gif

